metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[diaquacobalt(II)]- μ_3 -5aminoisophthalato- $\kappa^4 O.O':O'':N$

Yan Yang,^{a,c} Ming-Hua Zeng,^b Shu-Hua Zhang^b and Hong Liang^{a,b}*

^aCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, ^bDepartment of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ^cDepartment of Chemistry and Biology, Yulin Teachers' College, Yulin 537000, People's Republic of China Correspondence e-mail: hliang@mailbox.gxnu.edu.cn

Received 4 April 2007; accepted 28 June 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.096; data-to-parameter ratio = 13.0.

In the title compound, $[Co(C_8H_5NO_4)(H_2O)_2]_n$, the Co^{II} atom is coordinated in a distorted octahedral fashion by three O atoms of two carboxylate groups (one in a monodentate and one in a 1,3-bidentate mode) from two 5-aminoisophthalate anions, one N atom from the third 5-aminoisophthalate anion and two aqua ligands. The complex consists of an infinite neutral railroad-like linear polymer, which is packed into a three-dimensional framework through intricate N-H···O and $O-H \cdots O$ hydrogen bonding.

Related literature

For related literature, see: Dobson & Gerkin (1998); Hagrman et al. (1999); Janiak (2003); Moulton & Zaworotko (2001); Wu et al. (2002).

Experimental

Crystal data	
$[Co(C_8H_5NO_4)(H_2O)_2]$ $M_r = 274.10$	a = 6.4168 (4) Å b = 8.0919 (4) Å
Triclinic, P1	c = 10.1493 (7) A

$\alpha = 113.184 \ (1)^{\circ}$
$\beta = 99.946 \ (3)^{\circ}$
$\gamma = 98.995 \ (2)^{\circ}$
$V = 462.28 (5) \text{ Å}^3$
Z = 2

Data collection

Rigaku R-AXIS RAPID	4523 measured reflections
diffractometer	2110 independent reflections
Absorption correction: multi-scan	1854 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.027$
$T_{\min} = 0.767, T_{\max} = 0.835$	

Mo $K\alpha$ radiation $\mu = 1.87 \text{ mm}^{-1}$

 $0.15 \times 0.13 \times 0.10$ mm

T = 153 (2) K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.096$	independent and constrained
S = 1.01	refinement
2110 reflections	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
162 parameters	$\Delta \rho_{\rm min} = -0.75 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co-O1 ⁱ	2.0266 (18)	Co-O3 ⁱⁱ	2.0848 (18)
Co-O5	2.037 (2)	Co-N	2.109 (2)
Co-O6	2.0516 (19)	Co-O4 ⁱⁱ	2.1631 (18)
$O1^{\circ}-Co-O5$	88.76 (8)	O5-Co-N	176.15 (8)
$O1^i - Co - O6$	95.54 (8)	O6-Co-N	84.80 (9)
O5-Co-O6	91.77 (8)	O3 ⁱⁱ -Co-N	90.27 (8)
O1 ⁱ -Co-O3 ⁱⁱ	162.55 (8)	O1 ⁱ -Co-O4 ⁱⁱ	100.38 (7)
O5–Co–O3 ⁱⁱ	92.15 (8)	O5-Co-O4 ⁱⁱ	90.18 (8)
O6–Co–O3 ⁱⁱ	101.84 (8)	O6-Co-O4 ⁱⁱ	163.99 (8)
O1 ⁱ -Co-N	89.82 (8)	O3 ⁱⁱ -Co-O4 ⁱⁱ	62.20 (7)

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 1.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N-H0A\cdots O2^{iii}$	0.92	2.38	3.275 (3)	165
$N - H0B \cdot \cdot \cdot O3^{iii}$	0.92	2.09	2.991 (3)	165
$O5-H5B\cdots O1^{iv}$	0.84 (6)	1.90 (6)	2.738 (3)	175 (5)
$O5-H5A\cdots O2^{v}$	0.98 (4)	1.89 (5)	2.802 (3)	154 (4)
$O6-H6B\cdots O2^{i}$	0.86 (5)	1.92 (5)	2.755 (3)	162 (4)
$O6-H6A\cdots O4^{vi}$	0.97 (4)	1.87 (5)	2.791 (3)	158 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (iii) x - 1, y, z; (iv) x, y + 1, z; (v) x - 1, y + 1, z; (vi) -x, -y + 1, -z + 1.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the National Science Foundation of China (grant Nos. 30460153 and 20561001) and the Natural Science Foundation of Guangxi Province (grant No. 0447019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2057).

(7) Å

References

- Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503-1505.
- Hagrman, P. J., Hagramn, D. & Zubicta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.
- Janiak, C. (2003). Dalton Trans. pp. 2781-2804.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.
- Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wu, C.-D., Lu, C.-Z., Yang, W.-B., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. 41, 3302–3307.

supplementary materials

Acta Cryst. (2007). E63, m2056-m2057 [doi:10.1107/S160053680703173X]

catena-Poly[[diaquacobalt(II)]- μ_3 -5-aminoisophthalato- $\kappa^4 O, O': O'': N$]

Y. Yang, M.-H. Zeng, S.-H. Zhang and H. Liang

Comment

In recent years, a large number of metal-organic compounds have been prepared because of the fascinating structural and topological features of these compounds and their potential applications as functional materials, such as catalysts, optical materials and molecule-based magnets (Hagrman et al., 1999; Moulton & Zaworotko, 2001; Janiak, 2003). 5-aminoisophthalic acid (AIP) (Dobson et al., 1998), a polydentate organic ligand containing an amino group and two carboxyl groups, can be used as a bridging and/or terminal ligand. In this field, studies have been focused on organic-inorganic hybrid materials containing N-donor rigid heteroaromatic ligands, such as pyrazine or 4,4' -bipyridine. However, much less work has been carried out to investigate transition metal polymers containing aminobenzoic acid ligands. Using AIP, we have hydrothermally prepared the title compound, [Co(AIP) (H₂O)₂]_n. The title complex consists of one Co(II) cation, one 5-aminoisophthalate anion and two coordinated water molecules (Fig. 1). Each AIP ligand employs its two carboxylate groups and one amino group to coordinate to three different metal centers. Each Co^{II} center possesses a distorted six-coordinated octahedral geometry, defined by three carboxyl oxygen atoms, one from a monodentate and two from a 1,3-bidentate AIP²⁻ ligands, one nitrogen atom from the third 5-aminoisophthalate anion and two aqua ligands. The mean Co-O (carboxyl) bond distance is 2.092 (18) Å, which is slightly shorter than that in $[Co(C_8NH_5O_4)(H_2O)]_n$ (2.109 (2) Å) (Wu et al., 2002). This difference is probably attributed to the different coordination modes of the ligands. The most interesting feature is that the AIP ligands link cobalt centers in different ways to produces two different subrings A and B, which are both 14-membered rings located on an inversion centre, with Co-Co distances of 7.917 (3) and 7.689 (3) Å, respectively. THe difference between the rings is that the A ring is closed by bidentate carboxylate groups and the B ring by monodentate carboxylate groups. Together they form an open railroad-like framework polymer, running in the c direction. Each linear polymer is connected into a three-dimensional supramolecular network by intermolecular hydrogen bonds among aqua ligands, the oxygen atoms of carboxylate groups and amino groups (Table 2).

Experimental

Cobalt chlorine hexahydrate (0.119 g, 0.5 mmol), and 5-aminoisophthalic acid (0.0905 g, 0.5 mmol) were dissolved in water (9 ml). The solution was placed in a 15-ml Teflon-lined, stainless-steel, Parr bomb. The bomb was heated at 433 K for 6 days. The cooled-down mixture yielded light red crystals; these were washed with water and then dried in air (yield *ca* 70%, based on Co).

Refinement

The water H atoms were located on difference Fourier maps; their coordinates and isotropic displacement parameters were refined freely. All other H atoms were positioned geometrically and refined with a riding model, with C—H distances of 0.95 (aromatic) Å, N—H distances of 0.92 Å, and with $U_{iso}(H) = 1.2U_{eq}(C \& N)$.

Figures

Fig. 1. A view of (I), showing 30% probability displacement ellipsoids. Symmetry codes:(i)-x + 1,-y + 1,-z + 2; (ii) -x + 1,-y + 1,-z + 1.

catena-Poly[[diaquacobalt(II)]- μ_3 -5-aminoisophthalato- $\kappa^4 O, O': O'': N$]

Z = 2
$F_{000} = 278$
$D_{\rm x} = 1.969 {\rm ~Mg~m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 3976 reflections
$\theta = 3.3 - 27.5^{\circ}$
$\mu = 1.87 \text{ mm}^{-1}$
T = 153 (2) K
PRISM, green
$0.15 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer	2110 independent reflections
Radiation source: Rotating Anode	1854 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 153(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.3^{\circ}$
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.767, T_{\max} = 0.835$	$k = -10 \rightarrow 10$
4523 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_o^2) + (0.0586P)^2 + 0.466P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.096$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$

2110 reflections

162 parameters

 $\Delta \rho_{\min} = -0.75 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.007 (1) Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Со	0.20196 (5)	0.75115 (5)	0.80493 (3)	0.01298 (14)
01	0.6666 (3)	0.2413 (3)	0.9957 (2)	0.0187 (4)
02	0.9520 (3)	0.2510 (3)	0.8966 (2)	0.0244 (4)
03	0.8351 (3)	0.2502 (3)	0.4037 (2)	0.0201 (4)
O4	0.5073 (3)	0.2130 (3)	0.2718 (2)	0.0187 (4)
05	0.2461 (3)	1.0316 (3)	0.9070 (2)	0.0218 (4)
O6	-0.1152 (3)	0.7068 (3)	0.8195 (2)	0.0213 (4)
Ν	0.1401 (4)	0.4592 (3)	0.7069 (2)	0.0165 (4)
H0A	0.0745	0.4180	0.7659	0.020*
H0B	0.0389	0.4155	0.6172	0.020*
C1	0.3142 (4)	0.3725 (4)	0.6807 (3)	0.0166 (5)
C2	0.4366 (4)	0.3411 (4)	0.7907 (3)	0.0184 (5)
H2	0.3983	0.3718	0.8823	0.022*
C3	0.6145 (4)	0.2655 (4)	0.7693 (3)	0.0164 (5)
C4	0.6708 (4)	0.2196 (4)	0.6345 (3)	0.0171 (5)
H4	0.7907	0.1656	0.6182	0.021*
C5	0.5498 (4)	0.2536 (4)	0.5241 (3)	0.0171 (5)
C6	0.3705 (4)	0.3267 (4)	0.5456 (3)	0.0169 (5)
Н6	0.2857	0.3456	0.4687	0.020*
C7	0.7566 (4)	0.2477 (3)	0.8947 (3)	0.0168 (5)
C8	0.6319 (4)	0.2345 (4)	0.3918 (3)	0.0162 (5)
H5A	0.150 (7)	1.097 (6)	0.873 (5)	0.047 (12)*
H5B	0.373 (9)	1.097 (7)	0.930 (6)	0.068 (16)*
H6A	-0.227 (7)	0.764 (6)	0.792 (5)	0.046 (11)*
H6B	-0.093 (8)	0.719 (6)	0.910 (5)	0.051 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co	0.0108 (2)	0.0199 (2)	0.0113 (2)	0.00718 (13)	0.00536 (13)	0.00760 (15)
01	0.0169 (9)	0.0289 (10)	0.0139 (9)	0.0070 (8)	0.0050 (7)	0.0119 (8)
O2	0.0179 (10)	0.0403 (12)	0.0225 (10)	0.0142 (9)	0.0086 (8)	0.0171 (10)
O3	0.0170 (9)	0.0317 (11)	0.0153 (9)	0.0092 (8)	0.0066 (7)	0.0119 (9)
O4	0.0155 (9)	0.0282 (10)	0.0154 (9)	0.0086 (8)	0.0066 (7)	0.0101 (8)
O5	0.0183 (10)	0.0240 (10)	0.0248 (10)	0.0088 (8)	0.0079 (8)	0.0100 (9)
O6	0.0144 (9)	0.0321 (11)	0.0203 (10)	0.0091 (8)	0.0076 (8)	0.0116 (9)
Ν	0.0137 (10)	0.0207 (11)	0.0157 (10)	0.0061 (8)	0.0050 (8)	0.0075 (9)
C1	0.0157 (12)	0.0180 (12)	0.0171 (12)	0.0051 (10)	0.0069 (10)	0.0071 (11)
C2	0.0170 (12)	0.0230 (12)	0.0175 (12)	0.0055 (10)	0.0076 (10)	0.0096 (11)
C3	0.0167 (12)	0.0198 (12)	0.0141 (12)	0.0050 (10)	0.0056 (10)	0.0079 (11)
C4	0.0157 (12)	0.0179 (12)	0.0202 (13)	0.0071 (10)	0.0072 (10)	0.0087 (11)
C5	0.0175 (12)	0.0209 (12)	0.0135 (12)	0.0043 (10)	0.0074 (10)	0.0068 (11)
C6	0.0172 (12)	0.0197 (12)	0.0148 (12)	0.0054 (10)	0.0045 (10)	0.0080 (11)
C7	0.0194 (13)	0.0172 (12)	0.0169 (12)	0.0076 (10)	0.0069 (10)	0.0085 (11)
C8	0.0174 (12)	0.0186 (12)	0.0144 (12)	0.0064 (10)	0.0046 (10)	0.0081 (11)

Geometric parameters (Å, °)

2.0266 (18)	O6—H6B	0.86 (5)
2.037 (2)	N—C1	1.418 (3)
2.0516 (19)	N—H0A	0.9200
2.0848 (18)	N—H0B	0.9200
2.109 (2)	C1—C2	1.382 (4)
2.1631 (18)	C1—C6	1.401 (4)
2.452 (3)	C2—C3	1.387 (4)
1.274 (3)	С2—Н2	0.9500
2.0266 (18)	C3—C4	1.397 (4)
1.246 (3)	С3—С7	1.503 (3)
1.270 (3)	C4—C5	1.394 (4)
2.0848 (18)	C4—H4	0.9500
1.267 (3)	C5—C6	1.385 (4)
2.1632 (18)	C5—C8	1.487 (3)
0.98 (4)	С6—Н6	0.9500
0.84 (6)	C8—Co ⁱⁱ	2.452 (3)
0.97 (4)		
88.76 (8)	Co—N—H0A	107.3
95.54 (8)	C1—N—H0B	107.3
91.77 (8)	Co—N—H0B	107.3
162.55 (8)	H0A—N—H0B	106.9
92.15 (8)	C2—C1—C6	119.4 (2)
101.84 (8)	C2—C1—N	120.4 (2)
	2.0266 (18) 2.037 (2) 2.0516 (19) 2.0848 (18) 2.109 (2) 2.1631 (18) 2.452 (3) 1.274 (3) 2.0266 (18) 1.246 (3) 1.270 (3) 2.0848 (18) 1.267 (3) 2.1632 (18) 0.98 (4) 0.84 (6) 0.97 (4) 88.76 (8) 95.54 (8) 91.77 (8) 162.55 (8) 92.15 (8) 101.84 (8)	$2.0266(18)$ $O6-H6B$ $2.037(2)$ $N-C1$ $2.0516(19)$ $N-H0A$ $2.0848(18)$ $N-H0B$ $2.109(2)$ $C1-C2$ $2.1631(18)$ $C2-C3$ $1.274(3)$ $C2-H2$ $2.0266(18)$ $C3-C4$ $1.246(3)$ $C3-C7$ $1.270(3)$ $C4-C5$ $2.0848(18)$ $C4-H4$ $1.267(3)$ $C5-C6$ $2.1632(18)$ $C5-C8$ $0.98(4)$ $C6-H6$ $0.84(6)$ $C8-Co^{ii}$ $0.97(4)$ $Co-N-H0A$ $95.54(8)$ $C1-N-H0B$ $91.77(8)$ $C2-C1-C6$ $101.84(8)$ $C2-C1-N$

O1 ⁱ —Co—N	89.82 (8)	C6—C1—N	120.1 (2)
O5—Co—N	176.15 (8)	C1—C2—C3	121.0 (2)
O6—Co—N	84.80 (9)	C1—C2—H2	119.5
O3 ⁱⁱ —Co—N	90.27 (8)	C3—C2—H2	119.5
O1 ⁱ —Co—O4 ⁱⁱ	100.38 (7)	C2—C3—C4	119.7 (2)
O5—Co—O4 ⁱⁱ	90.18 (8)	C2—C3—C7	120.1 (2)
06—Co—O4 ⁱⁱ	163.99 (8)	C4—C3—C7	120.1 (2)
O3 ⁱⁱ —Co—O4 ⁱⁱ	62.20 (7)	C5—C4—C3	119.6 (2)
N—Co—O4 ⁱⁱ	93.60 (8)	С5—С4—Н4	120.2
O1 ⁱ —Co—C8 ⁱⁱ	131.37 (8)	C3—C4—H4	120.2
O5—Co—C8 ⁱⁱ	92.79 (8)	C6—C5—C4	120.3 (2)
06—Co—C8 ⁱⁱ	132.92 (9)	C6—C5—C8	120.0 (2)
$O3^{ii}$ —Co—C 8^{ii}	31.18 (8)	C4—C5—C8	119.2 (2)
N—Co—C8 ⁱⁱ	90.83 (8)	C5—C6—C1	120.0 (2)
Ω^{4ii}	31.08 (8)	С5—С6—Н6	120.0
$C7-O1-Co^{i}$	130.14 (17)	C1—C6—H6	120.0
C^{8} C^{3} C^{3}	90.60 (15)	02	125.6 (2)
$C_{0}^{*} = 0.04$ C_{0}^{ii}	87 15 (15)	02 - 07 - 01	1187(2)
CoO5H5A	123 (3)	01 - 07 - 03	115.7(2)
Co-O5-H5B	117 (4)	04 - (8 - 03)	119.8 (2)
H5A05H5B	106 (4)	04 - C8 - C5	119.0(2) 1219(2)
Co-O6-H6A	128 (3)	03 - 08 - 05	121.9(2) 118.2(2)
Co-06-H6B	99 (3)	04 C^{8} C^{ii}	61 77 (13)
H6A-06-H6B	114 (4)	$0^3 C^8 Co^{ii}$	58 23 (13)
C1 - N - Co	120.08(17)	$C_{5} = C_{8} = C_{0}^{ii}$	171 81 (19)
C1—N—H0A	107.3	0	1/1.01 (17)
	-74.77 (10)	C^2 C^1 C^6 C^5	-1 1 (4)
OI - Co - N - CI	-170.35(19)	$V_2 - C_1 - C_0 - C_3$	-1.1(4)
00 - 00 - N - 01	-170.33 (19) 87 78 (19)	$N = C_1 = C_0 = C_3$	175.0(2)
03 - 0 - N - 01	37.78(19)	$C_0 = 01 = C_1 = 02$	-171.91.(17)
$04 - c_0 - N - c_1$	25.02(19)	$C_0 = 01 = C_1 = C_3$	-1/1.01(1/)
$C8^{}C0^{}N^{}C1$	36.61 (19) 8(4 (2)	$C_2 = C_3 = C_7 = O_2$	-152.1(5)
$C_0 = N = C_1 = C_2$	86.4 (3)	C4 - C3 - C7 - O2	22.9 (4)
$C_0 = N = C_1 = C_0^2$	-90.3(3)	$C_2 = C_3 = C_7 = 01$	23.9 (4)
	0.2 (4)		-161.1 (2)
N - CI - C2 - C3	-1/6.5(2)	Co ⁿ —O4—C8—O3	-4.7 (2)
C1—C2—C3—C4	-0.2 (4)	Co ¹¹ —O4—C8—C5	171.5 (2)
C1—C2—C3—C7	174.8 (2)	Co ¹¹ —O3—C8—O4	4.8 (3)
C2—C3—C4—C5	1.2 (4)	Co ⁱⁱ —O3—C8—C5	-171.5 (2)
C7—C3—C4—C5	-173.8 (2)	C6—C5—C8—O4	-27.7 (4)
C3—C4—C5—C6	-2.2 (4)	C4—C5—C8—O4	160.3 (2)
C3—C4—C5—C8	169.8 (2)	C6—C5—C8—O3	148.5 (3)
C4—C5—C6—C1	2.1 (4)	C4—C5—C8—O3	-23.4 (4)
C8—C5—C6—C1	-169.8 (2)		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N—H0A···O2 ⁱⁱⁱ	0.92	2.38	3.275 (3)	165
N—H0B···O3 ⁱⁱⁱ	0.92	2.09	2.991 (3)	165
O5—H5B···O1 ^{iv}	0.84 (6)	1.90 (6)	2.738 (3)	175 (5)
O5—H5A···O2 ^v	0.98 (4)	1.89 (5)	2.802 (3)	154 (4)
O6—H6B···O2 ⁱ	0.86 (5)	1.92 (5)	2.755 (3)	162 (4)
O6—H6A···O4 ^{vi}	0.97 (4)	1.87 (5)	2.791 (3)	158 (4)

Symmetry codes: (iii) *x*-1, *y*, *z*; (iv) *x*, *y*+1, *z*; (v) *x*-1, *y*+1, *z*; (i) -*x*+1, -*y*+1, -*z*+2; (vi) -*x*, -*y*+1, -*z*+1.

Fig. 1

